The Next Wave of SiC Packaging and mSiC[™] Products

Jason Chiang jason.chiang@microchip.com Marketing Solutions | SiC BU

The Electrification of Everything

Riding the Second Wave of Silicon Carbide (SiC)

The Move from Si to SiC Devices

Big picture view

SiC systems can be less expensive than silicon, PLUS...

In addition to cutting their cost, SiC can make systems:

- More efficient
- Last longer
- More rugged
- Smaller and lighter

TO-247 Performance Improvement

Source sense pin for faster turn on and lower switching losses

Pushing Beyond The TO-247 with SMT Packages

Source sense pins and top-side cooled

SiC Power Modules For Even Higher Density

Parameter	Microchip APTGLQ300A120G	Microchip MSCSM120AM16CT1AG	Comparison SiC vs Si
Semiconductor type	Trench4 Fast IGBT	mSiC™ MOSFET	
Ratings @ T _c = 25°C	500A / 1200V	173A / 1200V	
Package type	SP6C (108 x 62 mm)	SP1F (52 x 41 mm)	~3.0 x smaller
Current @ 30 kHz T _c = 75°C, D = 50%, V = 600V	130A	130A	~3.1 x higher power density
Current @ 50 kHz T _c = 75°C, D = 50%, V = 600V	60A	115A	~2.0 x higher
E_{on} + E_{off} @ 100A T _j = 150°C, V = 600V	16.0 mJ	3.4 mJ	~5.0 x lower
	MORE POW HIGHER SWITCHING	ER @	

MICROCHIP

55

Comparison SP6LI vs. TO-247 Packages

MSCSM120AM02CT6LIAG

	SP6LI power module	TO-247 discrete package	Power module benefits			
MOSFET Electrical ratings	1200 V - 754 A @ Tc=80°C per switch	1200 V - 73 A @ Tc=100°C (non isolated) each	Higher power density	~	~	~
Size	62 mm x 108 mm / 2.44" x 4.25"	36 x (15.87 mm x 21.13 mm / 0.625" x 0.832")	Easier mounting		~	~
Mounting pcb area	6'696 mm2 / 10.37 sq. in.	Min. 13'950 mm2 / 21.62 sq. in. (mounting dependant)	Smaller system size		~	~
Weight	320 g w/ Cu baseplate - 220 g w/ AlSiC	36 x 6.2 g = 223.2 g (no isolation)	More compact design		~	~
Stray inductance	3 nH	20 nH	Higher efficiency	~	4	~
Isolation	4 kV AC, 1mn - per design	None, to be added during assembby	Higher reliability	~	~	~
Thermal Management	Very good and repeatable	Complicated	Better thermal performance	4	~	~
Temperature sensor	Yes, NTC	No, to be added externally	More accurate protection	~	~	~
Assembly time	4 mounting holes + 14 electrical screws	36 mounting holes + 108 solder pins (additional labor)	Faster assembly time	1	×	\checkmark
COSt (1 k pieces price basis)	\$ 926.62 + minimum labor cost	\$ 911.88 + high labor cost	Lower system cost		~	~

Flexibility with mSiC[™] Module Architectures

Standard, modified standard and custom modules

Power Semiconductor Die SiC, IGBT, MOSFETs, Diode

- Soldered to the substrates
- Connected by ultrasonic Al wire bonds

Substrates

AI_2O_3 , AIN, Si_3N_4

- Provide isolation
- Good heat transfer to the base plate

Base Plate

Improve Heat Transfer to the Heatsink

- Copper material for good thermal transfer
- AlSiC for improved reliability

High Design Flexibility

Empowering balance with price, performance and reliability

© 2024 Microchip Technology Inc. and its subsidiaries

Package

Standard or Custom

- Environmental protection
- Mechanical robustness

Internal Printed Circuit Board

(Not available in all modules)

- Used to route gate signals tracks to small signal terminals
- Used to mount gate circuit and protection in case of intelligent power module

Terminals

Screw on or Solder Pins

- Provide the user with power and signal connections
- Minimum parasitic resistance and inductance

"Dyno Testing" State-of-the-Art SiC Power Modules Quickly unlock the capabilities of SP6LI modules

- Assess the performance of SP6LI mSiC[™] MOSFET modules
 - Switching loss measurement (E_{on}, E_{off} and E_{rr})
 - High-side and low-side DSAT (over current)*
 - High voltage evaluation (1200V modules)
 - Over various thermal conditions
- Continuous operation and double-pulse testing (DPT) evaluation
- Reduce risk evaluate and optimize in a controlled environment

Main applications:

- Electrified vehicles
- EV chargers
- Industrial equipment
- Solar power
- Energy storage
- Factory automation
- Al power

"Dyno Testing" State-of-the-Art SiC Power Modules Scenes SiC Livestream on SP6LI Double Pulse Testing

YouTube https://www.youtube.com/live/anRhNqwlq11

Summary

mSiC[™] Solutions Portal

www.microchip.com/SiC

and

www.Tektronix.com

- <u>Video:</u> Double Pulse Testing of Wide Bandgap Devices | Tektronix
- Testing Equipment: <u>Wide Bandgap Double Pulse</u> <u>Reference Solution | Tektronix</u>

Thank You

Adopt Silicon Carbide with Ease, Speed and Confidence www.microchip.com/SiC

